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Abstract--The Mexican Ridges foidbelt on the continental slope east of Mexico has major folds with wavelengths 
averaging 7 km. Locally, there are also small amplitude, near-surface folds with wavelengths of 2 km. Initial 
dominant wavelength is modelled by the finite element method using the hyperbolic stress-strain relationship 
originally derived for soils. Hyperbolic stress-strain models for sandstone and shale are calibrated using field 
porosity-depth relationships for shale, and laboratory one-dimensional consolidation data for sand and clay. 
Effective tangent Young's modulus calculated from hyperbolic stress-strain models is generally higher for 
sandstones than for shales, and for both rock types modulus increases substantially with depth. 

The finite element models of dominant wavelength duplicate the two orders of folds obs.erved in the Mexican 
Ridges and match their wavelengths. In the models, fold wavelength is nearly constant for large variations in both 
sandstone fraction in the folded section and pore pressure magnitude in the overpressured basal shale below the 
folded section, but fold amplification is increased by high pore pressure in the basal shale and by high sandstone 
fraction in the folded section. Fold wavelength is affected more by depth distribution of high pore pressure than 
by pressure magnitude, and on the lower continental slope where grain size may be smaller, a thicker zone of high 
pressure would partly explain the modest downslope increase in fold wavelength. 

INTRODUCTION 

THE Mexican Ridges foldbelt, located in the western 
Gulf of Mexico, extends nearly 400 km along the conti- 
nental slope (Fig. 1). Our study area is a small part of 
that belt defined by the four seismic sections (Buffler et 
al. 1979) shown in Fig. 1. In the study area, folds have 
topographic relief of up to 150 m and wavelengths for 
larger folds are 3-14 km. The general seismic stratigra- 
phy of the Mexican Ridges province was developed by 
Burlier et al. (1979) and is shown in Table 1. Scarbrough 

Fig. 1. Location of Mexican Ridges foldbelt. Dashed curves a r e  

schematic representations of fold trends (after Bryant et al. 1968). 
Solid curves are seismic lines and heavy dashed lines of the insert 

delineate structural domains (after Buffler et al. 1979). 

(1992) has further differentiated the stratigraphy of the 
study area based on seismic signature, correlations with 
DSDP holes in the deep Gulf of Mexico and sedimen- 
tation in adjacent coastal basins. 

Structural features of  the Mexican Ridges foldbelt 

Buffler et al. (1970) distinguished four deformational 
zones across the foldbelt (Fig. 2). Zone A nearest the 
Mexican Coast is characterized by growth faults and 
shallow slumps. Farther east, zone B consists of a thick 
sedimentary sequence ponded behind the first high- 
amplitude fold. Zone C encompasses the area of high- 
to-medium-amplitude folds that constitute the main part 
of the foldbelt. In zone D fold amplitudes decrease 
seaward. 

Individual fold axes plunge and die out or change 
amplitude and overall character along strike (Buffler et 
al. 1979), but some fold axes have been traced for over 
60 nautical miles (Bryant et al. 1968). In zones C and D, 
second-order folds occur locally in shallow units (latest 
Miocene to Holocene). In Fig. 2, three such folds are 
observed on the crest of a first-order anticline with its top 
at a sea floor depth equivalent to three seconds two-way 
travel time. In the study area, the shallow second-order 
folds have wavelengths of approximately 2 km, and are 
superimposed on the larger, first-order folds which have 
wavelengths loosely clustered about 7 km (Fig. 3). All 
folding seems to be restricted to the upper seismic units 
(Sigsbee-Cinco de Mayo and Upper Mexican Ridges). 

Most seismic sections show several imbricate 
landward-dipping thrust faults (Buffler et al. 1979, Pew 
1982). The faults are thought to flatten with depth and 
die out in the reflectionless lower Mexican Ridges and 
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Table 1. Generalized seismic units of the Mexican Ridges Province (modihed from Buffer et al. 1979, reprinted by permission) 

Unit Age Seismic characteristics Inferred lithology 

Sigsbee-Cinco de Mayo Late Miocene 
to Holocene 

Mexican Ridges Early Tertiary (?) 
to Mid-Miocene 

Campeche Mid-Cretaceous (?) 
to Early Tertiary (?) 

Strong, discontinuous reflectors. 
Prominent zone of large-scale cross-beds 
in middle of unit 

Strong, discontinuous reflectors in upper 
part; reflectionless zone in lower part. 
Lower boundary is sequence of strong, 
discontinuous reflections 

Generally weak reflectors to transparent. 
Strong, discontinuous reflections near 
bottom 

Challenger Jurassic (?) to Upper part is sequence of strong 
Mid-Cretaceous (?) reflections 

Alternating hemipelagic silty clays, fine- 
grained thin turbidites and sandy turbidites 

Mostly sandy turbidites in upper part, fine- 
grained turbidites and hemipelagic 
sediments in lower part. Possible sandy 
turbidites at base 

Mostly fine-grained, homogeneous pelagic 
or hemipelagic sediments. Possible 
turbidites toward base 

['ossible deep water carbonates 

upper Campeche units. The growth faults on the land- 
ward side of the folds (Buffler et al. 1979, Pew 1982) 
shallow with depth and become untraceable in the deep 
reflectionless zone. Folding is thought to be accommo- 
dated by flow in the basal overpressured shale (Buffler et 
al. 1979). The shale is soft enough to rise diapirically into 
anticlines of the Mexican Ridges south of the study area, 
where the folds have been buried by sediments. 

Buffler (1991) assigns the initiation of folding in the 
Mexican Ridges to Oligocene-Miocene time. Pew 
(1982) suggests a Middle Miocene age for fold initiation 
just south of the study area, with fold initiation in Late 
Pliocene or Early Pleistocene in zone D of the study 
area. The folds restricted sediment influx to the 
Veracruz Tongue on the east by early Late Miocene 
(Bertagne 1984) and they remain active to the present. 

Cause or folding 

Early investigations (Jones et al. 1967, Bryant et al. 
1968, Emery & Uchupi 1972, Massengili et al. 1973) 
developed several hypotheses but generally interpreted 
the folding to be the result of salt diapirism. With the 
realization that the folds are not salt cored, Buffler et al. 
(1979) proposed that folding results from gravity sliding 
or from compression related to subduction beneath the 
Middle America trench, transmitted to the Mexican 
Ridges Province through deep-seated foreland thrusts. 
Both mechanisms allow for detachment along a ddcolle- 
ment within the lower Mexican Ridges and upper Cam- 
peche units. 

Several lines of evidence favor the gravity sliding 
hypothesis. Garrison & Martin (1973) point out that 
along strike the foldbelt is composed of two lobes, each 
convex downslope, as would be expected with gravity 
sliding. Pew (1982) argues against foreland thrusting as a 
mechanism for folding. He notes that fold axes reflect 
the trend of the continental margin rather than the 
subduction zone. Also, foreland thrusting should have 
affected the thick Tertiary basins within the Gulf Coastal 
Plain. These basins have undergone extensive growth 
faulting, but show little sign of the compression expected 
in a foreland thrusting model. Suter (1987) concluded 
from borehole stress indicators to depths of 4912 m that 

the east coast of Mexico is under E-W to SE-NW 
extension, suggesting that active deformation in the 
Mexican Ridges foldbelt is not caused by external hori- 
zontal compression. Current interpretation generally 
favors the gravity sliding hypothesis (Ewing 1991, 
Bryant et al. 1991, Buffler 1991). 

If folding is gravity driven it is possible that this 
unusual occurrence of prominent, wide-spread folding 
results from an atypical slope profile. Most continental 
slopes have a large, steep drop at the shelf-slope break 
with a gentle lower slope. Instability is manifested by 
listric normal faults. Because the Mexican Ridges slope 
exhibits little drop at the shelf-slope break, its down- 
slope continuation is a broad zone of moderate and 
relatively constant slope. Flattening at the base of the 
slope provides the end constraint necessary for a broad 
upslope zone of compression. The moderate slope angle 
also allowed accumulation of sandy turbidites that might 
have bypassed a steeper slope. Similar folding might 
have occurred on the northern slope of the Gulf of 
Mexico except that incompetent salt extending all the 
way to abyssal depths allows easy deformation at the toe 
of the slope in the Sigsbee escarpment. Only on the east 
and west ends of the northern slope is the toe sufficiently 
buttressed to allow the folding of the Mississippi Fan and 
Perdido foldbelts. 

Rheology 

For highly stressed, fault-dominated sedimentary 
rocks such as those of accretionary wedges or growth 
faults, high strains lead to general failure that is well 
characterized by Mohr-Coulomb plasticity (Westbrook 
& Smith 1983, Davise ta l .  1983, Xiaoe ta l .  1991). Less is 
known of the rheology of more weakly deformed young 
sedimentary rocks, like those of the Mexican Ridges, in 
which gentle folds, diapirs, and compaction structures 
form largely by deformation as a continuum. Substantial 
inelastic deformation may occur in this environment 
with little faulting, and neither linear elastic nor Mohr- 
Coulomb plastic models represent such rocks ade- 
quately for quantitatively accurate modelling. 

In young sedimeniary rocks, compaction is the most 
important inelastic deformation in the absence of 
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Fig. 3. Histogram of fold wavelengths in the four seismic sections. 
The dashed line refers to shallow second-order folds, the solid line to 

first-order folds• 

nism. In many basins, compaction results in known 
porosity-depth relationships that can be used to cali- 
brate rheologic models. It is therefore useful to evaluate 
the mechanisms of compaction in sandstone and shale 
and the conditions under which different types of rheo- 
logic models may be valid. 

Compaction of sandstone 

Field evidence suggests that simple mechanical com- 
paction of sandstone is important near the surface, but at 
depth it is commonly arrested by cementation or sup- 
planted by pressure solution. Mechanical compaction is 
considered significant to depths of 1.2 km in the Texas 
Gulf Coast (Loucks et al. 1979, 1984, Loucks & Dodge 
1980) and to depths of 1-1.5 km for a suite of Tertiary 
sandstones in Germany (Fuchtbauer 1967). However, 
some sands are observed to remain uncemented and 
hence subject to mechanical compaction to greater 
depths. For example, the rapidly deposited Pliocene 
turbidite sandstones of the Ventura anticline have 
remained virtually uncemented at depths of 4.6-6.1 km 
(Hsu 1977). Stanton (1977) notes that sandstones with 
high matrix content experience slower cementation, and 
hence greater mechanical compaction than clean sands. 

Pressure solution can significantly influence compac- 
tion and other deformation in sandstones, but its role is 
uncertain. Tada & Siever (1989) note that most docu- 
mented pressure solution is in pre-Tertiary rocks. They 
observe also that it can be prevented by cementation. 
Perhaps for those reasons it is limited in Tertiary rocks of 
the U.S. Gulf Coast (Land 1984), a geologic environ- 
ment somewhat similar to the Mexican Ridges. How- 
ever, where conditions are favorable, pressure solution 
may be important at depths greater than 1-1.5 km (Tada 
& Siever 1989, Gratz 1991). At depths in excess of 3 km 
large pressure solution strains occur locally (House- 
knecht 1988). 

Compaction of shale 

Argillaceous sediments compact in a primary com- 
pression stage by progressive reorientation and re- 
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arrangement of grains with fluid expulsion (e.g. Rieke & 
Chilingarian 1974, pp. 1-27, Magara 1978, pp. 11-36, 
Sowers 1979, pp. 148-176, Oertel 1983). In laboratory 
consolidation tests this stage ends when excess pore 
pressures become zero. A more gradual secondary com- 
pression follows, resulting from plastic deformation and 
failure of grains (Sowers 1979, pp. 148-176) and possibly 
re-equilibration of tightly bound water (Ladd et  al .  

1977). These mechanical compaction processes produce 
large strains in response to increased load, and where 
permeability of adjacent units prevents overpressuring, 
strain in response to new loads is rapid enough that time 
dependence is insignificant in modelling slow processes 
such as folding. 

POROSITY-DEPTH RELATIONSHIPS 

To calibrate a rheologic model, both stresses and 
strains must be known. The best hope for constraining 
these parameters lies in data from young sedimentary 
basins which have undergone relatively uninterrupted 
sedimentation and have no history of horizontal com- 
pression. Porosity-depth curves for sandstone and shale 
from these basins serve as indirect indicators of the 
vertical strains associated with compaction. One- 
dimensional consolidation tests performed in the labora- 
tory are mechanically analogous to compaction defor- 
mation, and are also used to calibrate hyperbolic stress- 
strain models (described below) for sandstone and 
shale. 

Field porosity-depth relationships suggest that poro- 
sity (as well as compaction) of deeply buried sandstones 
may be primarily controlled by cementation and/or 
pressure solution. Porosity-depth curves for normally 
consolidated Cenozoic sandstones are shown as solid 
lines in Fig. 4. The term 'normally consolidated' indi- 
cates that present depth is approximately equal to maxi- 
mum burial depth. Laboratory data for unconsolidated, 
uncemented sands compacted in one-dimensional con- 
solidation tests (horizontal strain = zero) are shown as 

dashed lines. For laboratory data, equivalent depths are 
computed from effective compaction stress (stress minus 
pore pressure) using Eaton's (1969) vertical stress gradi- 
ent and a normal hydrostatic pore pressure gradient of 
0.0105 Mpa m - t  (Loucks e t  al .  1981). At low vertical 
stress (depths to 1 km), porosities may be similar for the 
two data sets. At greater vertical stress, porosities de- 
crease more gradually with depth for laboratory com- 
pacted sands than for natural sandstones. Similarity 
between field and laboratory data at shallow depth 
suggests that grain re-arrangement and fracture may be 
dominant to a depth of at least 1 km. 

Well-cemented sandstones can probably be approxi- 
mated as linear elastic. Deformation of uncemented 
sandstones probably resembles that observed experi- 
mentally for sands, at least at shallow depth, and per- 
haps deeper where conditions (as yet poorly 
understood) do not favor pressure solution. Sandstones 
not strongly affected by cementation or pressure solu- 
tion are best characterized by an inelastic rheology when 
normally consolidated, although their behavior, like 
that of soils, should be nearly linear elastic during 
unloading (Karig & Hou 1992). Figure 5 shows porosity- 
depth curves for experimentally deformed sands only. 
The solid curves, drawn by hand for high, low and 
intermediate porosities are used to calibrate hyperbolic 
stress-strain models. 

Porosity-depth curves for normally consolidated 
Cenozoic clays and shales are shown in Fig. 6. Porosities 
may be anomalously high in some curves because of high 
pore pressures. However.  if the natural clays and shales 
plotted here follow the trend for the U.S. Gulf Coast. 
large anomalous pore pressures would be expected be- 
low 2.5-3 km. At such depths, they would have little 
effect on the curves in Fig. 6. Data for laboratory one- 
dimensional consolidation of clays are shown in Fig. 7. 
For these data, drained loading and secondary compres- 
sion was achieved by maintaining a given applied load 
until the strain rate approaches zero: at that point, an 
additional load increment is applied. Figure 8 shows the 
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Fig. 8. Porosity vs depth for field shales and clays (solid) and labora- 
tory clays (dashed) of Figs. 6 and 7. 

field and laboratory data plotted together. The data sets 
generally overlap and exhibit similar trends. This would 
be expected if compaction mechanisms observed in the 
laboratory also govern deformation in the field. 

H Y P E R B O L I C  S T R E S S - S T R A I N  M O D E L  

Shales and uncemented sandstones in young sedimen- 
tary basins exhibit compaction behavior much like that 
of sands and clays compacted in the laboratory. Several 
soil mechanics models represent the large strains that 
occur above the elastic limit but below the Mohr -  
Coulomb failure envelope (see Yong & Ko 1981). These 
models are successful in civil engineering practice, but 
few have been applied to geological settings (Kosloff e t  

a l .  1980, Jones & Addis 1986). The model chosen for this 
study is the hyperbolic stress-strain law. It was selected 
because: (1) it is based on sufficiently fundamental 
principles that it successfully models both sand and clay; 
(2) it does not require empirical constants that must be 
obtained through extensive laboratory tests; (3) its para- 
meters are physically meaningful and some can be evalu- 
ated independently. Deformation in the Mexican 
Ridges foldbelt is unusually well suited to modelling by 
the hyperbolic stress-strain models derived for young 
sedimentary basins. With modest strains and minor 
faulting, folding has proceeded largely by continuum 
deformation. Because it has remained continuously be- 
low sea level, no erosion or overconsolidation (by re- 
duction of vertical stress) (Das 1983, pp. 253-338) has 
occurred. This relative structural and stratigraphic sim- 
plicity has largely held the foldbelt within the restrictive 
mechanical conditions to which our hyperbolic stress- 
strain models apply. Details of the hyperbolic stress- 
strain model and its application in numerical stress 
analysis are discussed by Duncan & Chang (1970), 
Duncan (1981), and Vaid (1985). 

The governing equation: 

0"1 - -  0"3  = 1 e (1) 
- - +  
E i (O" 1 - -  O ' 3 ) u l  t 

is derived from the assumption that the relationship 
between stress and strain is hyperbolic. Stresses at and 

, , , cr 3 are maximum and minimum effective principal 
stresses, respectively (where compression is considered 

i .~. ,.. positive and effective stress is normal stress minus pore 
pressure), e is strain in the ot direction, E i is the effective 

/ /iA" . Young's modulus for at = 0"3 and (01 - a3)ul t is the 
.:: [ ." asymptotic value of the stress difference for infinite e. 

The parameters are illustrated in Fig. 9. E i is assumed to 
vary with effective confining pressure 03 as 

E i = k p a  (2) 

(Jaky 1944), where k and n are empirically determined 
material constants; Pa, atmospheric pressure, is intro- 
duced to make k and n dimensionless. The asymptotic 
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Fig. 9. Hyperbolic stress-strain relationship. 

stress difference (o~ - O3)ul t can be stated in terms of the 
Mohr-Coulomb failure stress (ol - o3)f as 

1 
(o ,  - <0u, ,  = ~ ( m  - o3) , ,  (3)  

where Rf is an empirical constant less than 1.0 that ties 
between 0.5 and 0.9 for most soils (Duncan & Chang 
1970). Stating (oj - 0 3 )  f in terms of o3 yields 

I {2c cos p + 203 sin q~') 
(o, - o3), m = g \ i ~- s in  ~ , '  (4) 

where c and q~ are cohesion and friction angle of the soil. 
For incremental loading analysis, the effective tangent 
Young's modulus E, can be written 

Rr(1 - sin q~)(o 1 - o0'1 k I'o3V' 
E t =  ,1 - --2ccosq)+203slnT---:d? ] Palpa)~ . (5) 

Application of the equation to general problems of two- 
and three-dimensional incremental elasticity, such as 
those considered here, requires a second constant. 
Effective Poisson's ratio, v (Duncan & Chang t970), is 
used in this analysis, although bulk modulus would be 
equally valid (Duncan 1981). Because loading is mono- 
tonic in this study, effective stiffness for unloading and 
reloading (Duncan 1981) is not addressed. 

EVALUATION OF PARAMETERS FOR THE 
HYPERBOLIC STRESS-STRAIN MODEL 

Each curve in Figs. 5-7 represents a unique material 
and a unique stress-strain history. Best-fitting para- 
meters for the hyperbolic stress-strain model might be 
found for each curve, however, most curves record 
porosity variation for only a small range of stress. Such 
short curves, taken alone, would not sufficiently con- 
strain a model over the large stress/depth range import- 
ant in Mexican Ridges and other geologic modelling. 
Accordingly, to develop general rheologic models, a 
family of curves has been drawn for each data set. These 
are shown as solid curves in Figs. 5-7. The low and high 
porosity curves approximate the range of data, whereas 
the intermediate curve is considered to best represent 
the data set as a whole. These curves are extrapolated to 

cover the wide stresss/depth range of interest by main- 
taining approximate parallelism with data curves. The 
curves fitted with the hyperbolic stress-strain relation- 
ship are those for field shale, laboratory clay, and 
laboratory sand. The field sandstone data are not 
modelled because, as suggested above, porosity re- 
duction below shallow depths is probably controlled by 
cementation or pressure solution. Slope of the porosity- 
depth curve is particularly variable at great depth (or 
equivalent depth) for lield shale and laboratory clay. 
There is no discernible control of slope by either grain 
size or mineralogy and in the case of laboratory clays we 
gave greatest weight to natural sediments collected in 
the field in constructing the intermediate curve which is 
used in most calculations below. 

For purposes of model calibration, the data to be 
fitted are stresses and strains, observed or inferred. The 
strength and deformation parameters to be determined 
are c, e?, Rf, k, v and n. Assumptions and constraints are 
discussed below for each class of parameters. 

Stress and strain 

Effective vertical stresss o, (effective stress in the 
direction of compaction) is known for laboratory tests. 
For field data, depth is related to vertical stress by 
Eaton's (1969) vertical stress gradient curve for the U.S. 
Gulf Coast and an assumed pore pressure gradient of 
0.0105 Mpa m - t .  This ignores the effect of overpressur- 
ing which, as discussed above, may be locally significant. 
Effective horizontal stress, (& for the field shale 
porosity-depth curves, was calculated according to Pilk- 
ington's (1978) relationships based on hydrofracturing 
data. 

For curves derived from laboratory one-dimensional 
consolidation tests, ~, is estimated as (Jaky 1944): 

o h = o~ (1 - sin 0),  (6) 

where q~ is friction angle for the sediment. This relation- 
ship, routinely employed in soil mechanics, character- 
izes horizontal stress in one-dimensional consolidation 
for both sand and clay (Mayne & Kulhawy 1982). It is 
used in this investigation because ah was not measured 
for most of the available test data. As indicated below, a 
single value of ~ was used for all sands and a different 
value for all clays. The constant ratio of ~ to o h implied 
by equation 6 is approximately confirmed experiment- 
ally to o,, of 35 MPa by Karig & Hou (1992). 

Strain at a given depth is calculated from the nine 
porosity-depth curves (solid curves of Figs. 5-7) under 
the assumption that all change in porosity results from 
vertical strain. The finite strain equation applied to the 
porosity-depth curves is: 

/ ( l  .... . , ) )  

where Pi and p~ arc initial anti final porosities, respect- 
ively. 
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Strength and deformation parameters 

Although it would be possible to find best fits for all 
parameters in the hyperbolic stress-strain model, both 
the limitations of the data and the intended use of the 
models argue against this. Stress-strain behavior in one- 
dimensional consolidation lies between elastic behavior 
and fully plastic yielding. For that reason, it is not well 
suited to determination of the Mohr-Coulomb strength 
parameters c and ~. With independent estimates of 
these parameters, a model is derived that should behave 
realistically under loading conditions closer to the 
Mohr-Coulomb failure envelope than those found in 
one-dimensional consolidation. 

Sand is a cohesionless material (c = 0) well character- 
ized by q~. Friction angle varies with density of the sand 
(i.e. closeness of packing) and with angularity of grains 
(Bishop & Eldin 1953, Leonards 1962, Sowers 1979, pp. 
197-202). It exhibits minor variation with depth (Ladd et 
al. 1977), but for simplicity, a constant value is used in all 
analyses. Mayne & Kulhawy (1982) compiled data for 74 
natural sands and artificial sands composed of natural 
sand grains. The mean of q~ of 35.8 ° (s.d. 5.4 °) used in all 
calculations is approximately equidistant from the maxi- 
mum and minimum values reported by Bishop & Eldin 
(1953) for different degrees of packing density. For clays 
and shales, shear strength r is characterized by: 

r = c + o tan q~, (8) 

where o is normal stress on the plane of failure and c is 
cohesion. A fundamental observation in soil mechanics 
is that for normally consolidated sediments, c = 0 and 
equation (8) reduces to: 

r = a tan ~p. (9) 

This result, first recognized by Hvorslev (Hvorslev 1936, 
1937, Tschebotarioff 1951, pp. 154-156), has been con- 
firmed experimentally and is still considered valid (e.g. 
Leonards 1962, Peck 1985, Wroth & Houlsby 1985). 
Thus, strength of normally consolidated sediments is 
characterized by q~. This assumption is appropriate for 
modelling porosity reduction with burial and other de- 
formation for which normal consolidation is maintained. 
For situations in which unloading has occurred, the 
sediment will be overconsolidated and equation (8), 
with non-zero c, will govern failure of clays and shales. 

Mayne & Kulhawy's (1982) compiled @ angles for 
normally consolidated clays include both pure clays and 
more heterogeneous natural sediments described as 
clays. The q~ angle tends to be lowest for pure expand- 
able clays, as expected, but ~0 correlates only weakly 
with reported grain size parameters (Mayne & Kulhawy 
1982). A mean q~ of 26.5 ° (s.d. 5.6°), calculated from 43 
values (after deleting organic and glacial sediments) was 
used to characterize strength of clay and shale. 

Procedure for material parameter determination 

To find the best model for each of the nine porosity- 
depth curves, deformation parameters k, n, Rf and v, 

were allowed to vary within wide limits dictated by 
physical constraints. Each of the porosity--depth curves 
represents a hypothetical history of horizontal and verti- 
cal stresses and corresponding vertical strains. Knowl- 
edge of c, ~0 and vertical and horizontal effective stresses 
Ov and Oh and assumed trial values for k, n, Rf and v, 
allows calculation of E t, for stress states corresponding 
to any depth by equation (5). Vertical and horizontal 
strain increments Aez and Ae~ are then calculated for 
each depth interval by incremental elastic stress-strain 
relationships: 

Aez=(-~t)[AOz-2VAOx] (10) 

Aex=(~t)[(1- v)Aox- vAoz], (11) 

where horizontal stress increments are assumed equal in 
the x and y directions. The stress-strain history for a 
particular trial hyperbolic stress-strain model is simu- 
lated by summing strain increments (equations 10 & 11) 
for 100 stress/depth increments. The  error between 
strains calculated by the model and strains calculated 
directly from the porosity-depth curve is evaluated at 
approximately 15 points, equally spaced along the semi- 
logarithmic porosity-depth curve. The logarithmic scale 
of the plots gives greater weight to the low stress (shal- 
low depth) region of the curves where larger strains 
occur. For tectonically quiescent basins, horizontal 
strains ex and ey should be much less than e z and their 
correct value is assumed to be zero. Thus, to evaluate 
error at a point on the porosity--depth curve, twice the 
absolute value of horizontal strain calculated by 
equation (11) is added to the absolute value of the error 
for ez, and the sum is squared. Quality of fit for a model is 
judged by the sum of these squared errors. 

The best model for each of the nine porosity--depth 
curves is found by a direct grid search using all combi- 
nations of the selected parameter values for k, n, Re and 
v. The grid search is repeated several times in the 
neighborhood of the best-fitting model, with progress- 
ively smaller increments of the fitting parameters. 

IMPLICATIONS OF THE HYPERBOLIC STRESS- 
STRAIN MODELS 

Best-fitting material parameters for the nine porosity- 
depth curves are shown in Table 2. Stress-strain curves 
calculated directly from porosity--depth curves are com- 
pared to those calculated with the best-fitting model for 
the field shale intermediate porosity curve in Fig. 10. 
Behavior for other models is similar. The curves show 
both the profound non-linearity of the stress-strain 
curves and the good fit for geologically significant 
stresses. The graph on the right shows stress plotted on a 
logarithmic scale; it is apparent from this figure that the 
quality of fit is lowest at very low stresses. Kondner 
(1963) and Kondner & Zelasko (1963) also noted this 



1610 T . M .  THARP and M. G. SCARBROUGH 

Table 2. Best-fitting parameters for hyperbolic stress-strain models 

k n Rf J, 

Shale (field) 
Low porosity 61.1 //.860 0.900 0.347 
Intermediate porosity 27.6 0.819 0.824 0.363 
High porosity 14.4 0.772 0.64(1 0.355 

Clay (laboratory) 
Low porosity 38.3 0.846 0.692 0.363 
Intermediate porosity 18.0 0.908 0.532 0.355 
High porosity 22.5 0.969 0.984 11.355 

Sand (laboratory) 
Low porosity 387.5 0.554 0.920 0.298 
Intermediate porosity 214.5 0.656 0.760 0.298 
High porosity 123.2 0.792 0.820 0.298 

All parameters are dimensionless. 

shortcoming of the hyperbolic stress-strain model. For 
clays and shales k is low, and n is relatively high resulting 
in very low E t at shallow depths and a large increase in Et 
with depth. For sands k is greater, and n smaller causing 
relatively large E t at shallow depths and a smaller rate of 
increase with depth. 

Variation of Et with depth is shown in Fig. 11. The 
curves are calculated by equation (5), using the fitting 
parameters listed in Table 2 and effective vertical and 
horizontal stresses discussed above (Eaton 1969, Pilk- 
ington 1978). The variation in E t is great between the 
low, intermediate and high porosity curves for a given 
data set. However,  the intermediate curves for field 
shale and laboratory clay, which are relatively well 
constrained by the data, are almost identical. 

The model's predictions of tangent modulus for unce- 
mented sandstone and shale have interesting impli- 
cations for folding analysis. Figure 11 indicates that 
tangent modulus is generally greater for sandstone than 
for clays and shales. The ratio of Et for laboratory sand 
data (E~nds,o,e) tO that for field shale and laboratory 
clay (Eshale) is plotted in Fig. 12. The figure shows that 
for field shale Esandstone/Eshale is 33 at 50 m depth, it 
decreases to 10 at 500 m and finally to 3 at 5 km. This 
convergence of effective tangent moduli at depth 
suggests that the thickness of individual sandstone beds 
may control folding wavelength at shallow depths where 
rheologic contrast is high. Where rheologic contrast is 
lower, a thick sandstone-shale sequence is less l iken to 
fold, but it may fold as a single unit if it is bounded by 
incompetent units such as evaporites or overpressured 
shales. 

Limitations of  the models 

Some limitations are intrinsic to the hyperbolic stress- 
strain formulation, others arise from limitations of the 
calibration data. The hyberbolic stress-strain models 
presented here are most appropriate for stress states in 
which sediments remain normally consolidated. If either 
03 or o 1 decreases, as during uplift and erosion, the 
sediments become overconsolidated; c then becomes 
non-zero for shales and other parameters also may 

change. The models seem appropriate for simulating the 
continuum deformation observed in the Mexican Ridges 
Foldbelt, where throughout the history of sedimentation 
and deformation both o 1 and 03 have increased monoto- 
nically, except in the up-dip region of growth faulting. 
This preserves the normally consolidated state in the 
folded region. 

As formulated here the hyperbolic stress-strain law 
ignores anisotropy. This could be incorporated into the 
model by adding material parameters (Duncan & Chang 
1970), however, their evaluation would require exten- 
sive data for multiaxial loading. As shown below, the 
anisotropy resulting from interlayering of sandstone and 
shale can be represented. Some potential error in the 
models is related to uncertainties in pore pressure. Pore 
pressure values in the field shale data are unknown. If 
high, they could cause shale stiffness to be overesti- 
mated or they could mask a small t ime-dependent com- 
ponent of strain. 

MODELLING OF MEXICAN RIDGES 
WAVELENGTHS 

Fold wavelength is a function of thicknesses and 
rheologies of the folding and underlying units. The 
turbidite units (Table 1) are assumed to be interbedded 
sandstones and shales and the pelagic and hemipelagic 
units are assumed to be shale For each seismically 
recognizable unit in each of the four seismic lines (Fig. 1 ) 
we estimated the percentage of the unit with sand-prone 
characteristics such as clinoforms and discontinuous 
reflectors (Scarbrough 1992). This represents a crude 
quantitative assessment of the relative lithologic charac- 
ter of the units, but even in units judged to have a large 
percentage of sand-prone seismic facies the actual sand- 
stone fraction is quite uncertain and may be small. The 
Mexican Ridges are on the continental slope, which 
might suggest a total sandstone fraction of less than 10% 
(Curtis & Picou 1978). However.  some units may rep- 
resent the distal part of submarine fans: parts of the 
analogous Mississippi fan are more than 50% sand at 
water depths exceeding those for Mexican Ridges depo- 
sition (Bouma et al. 1986). 

Alternative lithologic models, intended to span the 
range of uncertamity, resull from assigning various 
sandstone fractions to our numertcal estimates of the 
percentage of sand-prone facies. Figure 13 shows a 
representative lithologic model which will be referred to 
below as the 'high sandstone' model (9.8% sandstone in 
the folded section). The 'low sandstone' model referred 
to below (2.5% sandstone) has (in each partly sandstone 
unit) 1/4 the sandstone fraction shown in Fig. 13. 

A common element in all recent interpretations of the 
origin of the Mexican Ridges foldbelt is that the lower 
part of the sedimentary section is largely overpressured 
shale. Based on the change in seismic character and 
velocity Scarbrough (1992) places the top of the over- 
pressured section at a depth of 2120 m in the study 
section for GLG-18 and at similar depth in the other 
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Fig. 10. Representative comparison of stress-strain curves calculated from porosity--depth curves (+) and from best-fitting 
hyperbolic stress-strain models (solid circles) with stress on a linear or logarithmic scale. 
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Fig. 11. Tangent modulus E t vs depth for best-fitting models with in situ stress conditions. H, I and L refer to high, 

intermediate and low porosity models (Table 2) as defined by the solid curves in Figs. 5-7. 
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Fig. 12. Ratio of sandstone tangent modulus to moduli for field shale 
and clay (solid curve) and laboratory clay (dashed curve), computed 
from best-fitting hyperbolic stress-strain models for intermediate 

porosity. 

seismic lines. Two alternative pore pressure distri- 
butions were used to represent overpressuring. Detailed 
measurements in other basins commonly reveal a nor- 
mally pressured section overlying a seal across which 
there is a pressure jump (Hunt 1990, Powley 1990). Both 
above and below the seal the pressure gradient is hydro- 
static. This model will be referred to as the sealed, 
normal gradient model. In this situation the highest 

value of 2, pore pressure/lithostatic pressure, is directly 
below the seal. The result is a thin zone of reduced 
tangent modulus and reduced strength. 

In the second pore pressure model, pressure is normal 
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near the surface, but is assumed to jump at some depth 
to a high and constant value of 2 which then obtains 
below that depth. This implies a lithostatic pore pressure 
gradient if 2 = 1 and a gradient between hydrostatic and 
iithostatic for more moderate values. This model will be 
referred to as the sealed, high gradient model. It seems a 
reasonable if overly simple model for a thick basal shale 
with low permeability. For this model the depth interval 
of relatively low stiffness and strength is thicker than for 
the sealed, normal gradient model. 

The purpose of the finite element analysis was to find 
initial dominant wavelengths of folding. The dominant 
wavelength is determined for a particular lithologic and 
pore pressure model by subjecting finite element meshes 
with initial perturbations of different wavelength to 
horizontal shortening. The ratio of perturbation height 
to wavelength for the initial perturbation is the same for 
all models, and the dominant wavelength is that for 
which fold amplification, i.e. the ratio of folding deflec- 
tion to initial perturbation, is maximum. 

For each finite element mesh the horizontal dimen- 
sion is half the assumed wavelength. The model extends 
down to the top of the Challenger Unit at which vertical 
displacement is assumed to be zero. The finite element 
mesh is shown in Fig. 14. The eight-node isoparametric 
elements used (Zienkiewicz 1971, p. 129-155) allow a 
quadratic (parabolic) displacement variation along the 
element. This allows accurate modelling of fold dis- 
placements with few elements. Element stiffness is nu- 
merically integrated with nine Gauss points rather than 
the minimal four to more accurately represent spacial 
variation of tangent modulus. The finite element code 
was written by the first author and executed in double 

precision on an IBM 3090. Isostatic stiffness (Tharp 
1985) is imposed at the top of the mesh to account for the 
gravitational force resulting from vertical deflection of 
the sea bottom. Although for the 'at rest' condition in 
sedimentary basins vertical stress probably exceeds hori- 
zontal stress (Karig & Hou 1992), Mexican Ridges 
folding implies that horizontal stress has come to exceed 
vertical stress. For simplicity, we calculate tangent 
modulus for horizontal stress equal to vertical stress in 
all units. 

Each lithologic unit is assumed to be all shale or 
interbedded sandstone and shale. Interbedded units are 
orthotropic, with different elastic properties parallel and 
perpendicular to bedding. In interbedded units, stiff 
sandstone beds carry greater horizontal stress than shale 
beds in response to horizontal strain, but both litholo- 
gies must have the same vertical stress. As a result 
Young's modulus in the horizontal direction will exceed 
that in the vertical direction. Even vertical strain in the 
shale is restricted by the sandstone beds because vertical 
strain engenders horizontal strain by Poisson's effect 
and the sandstone beds constrain that deformation. 
Thus the increase in stiffnesses, particularly horizontal 
stiffness, caused by a modest sandstone fraction can be 
substantial where the rheologic contrast between sand- 
stone and shale is high. There are five independent 
elastic constants for an orthotropic material. The rather 
involved algebraic expressions (not shown) are found in 
terms of the fractions of sandstone and shale and the 
isotropic elastic constants of the two lithologies by 
obvious simplifications of the general expressions de- 
rived by Gerrard (1982L 

Because only the initial dominant wavelength is inves- 
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Fig. 14. Finite element mesh with initial vertical sinusoidal perturbation of 0.01 times wavelength, The lower surface is 
fixed in the vertical direction, the right side of the mesh is fixed in the x direction and the left side has constant displacement 

in the x direction 
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models the sealed, normal gradient pore pressure model with 2 = 0.9 

at the top of the overpressured section was used. 

tigated a simple linear elastic analysis suffices. The 
elastic amplifications shown below are very small, but 
non-linear finite element analyses (work in progress) 
show that buckling forces and the non-linearity of the 
hyperbolic stress-strain law produce sufficient amplifi- 
cation to explain the observed folding. In non-linear 
analyses amplification increases at an accelerating rate 
with fold amplitude. With 2 = 0.95 in the sealed, high 
gradient, high sandstone model horizontal shortening of 
15% produces the 150 m fold relief of the highest 
amplitude folds in the study area from an initial pertur- 
bation of only 10 m over a wavelength of 10 km. Strain 
softening in the hinges of the folds maintains the domi- 
nant wavelength established initially, with a modest 
reduction occasioned by horizontal shortening. 
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gradient and sealed normal gradient pore pressure models. For curve 

'D' the drained condition is assumed for the basal shale. 

Table 3. Dominant wavelengths 

Shallow folds Large folds 

Wavelength Wavelength 
2 (km) A (km) A INITIAL DOMINANT WAVELENGTHS 

Variation of fold amplification with wavelength is 
shown in Figs. 15 and 16 and Table 3. The vertical 
displacements result from an arbitrary lateral strain of 
0.01, imposed on a model with initial vertical sinusoidal 
perturbation of the mesh of 0.005 times assumed wave- 
length. For a wide variety of models there are two peaks 
in the fold amplification vs wavelength curve. These two 
peaks are observed when fold deflections are taken at 
the surface, but dominant wavelength and the relative 
intensity of the two fold wavelengths are more accu- 
rately represented by fold deflections measured closer to 
the neutral surface of each folding section. This is true 
because with Young's modulus increasing downward, 
the neutral surface of the folding section (i.e. the depth 
at which bending strain is zero) is shifted below the 
middle of the folding section. This attenuates displace- 
ments of both anticlinal and synclinal sense at the 
surface for the following reason. Bending strain in- 
creases linearly away from the neutral surface and at the 
same rate above and below. The part of the folding 
section above the neutral surface is thicker and, in a 
syncline, it is in compression, whereas the thinner part of 
the folding section below the neutral surface is in tension 

High pressure gradient, low sandstone 
0.95 1.50 1.23 11.5 5.64 
0.9 1.55 1.23 10.5 3.83 
0.8 1.55 1.22 10.0 2.41 
0.7 1.60 1.22 10.0 1.79 

High pressure gradient, high standstone 
0.95 1.45 1.69 12.0 5.96 
0.9 1.45 1.69 10.5 4.09 
0.8 1.45 1.69 10.5 2.61 
0.7 1.45 1.69 10.5 1.96 

Normal pressure gradient, low sandstone 
0.95 1.60 1.23 7.5 2.80 
0.9 1.60 1.22 7.5 2.29 
0.8 1.60 1.22 7.0 1.75 
0.7 1.60 1.22 7.5 1.45 

Normal pressure gradient, high sandstone 
0.95 1.45 1.69 8.0 2.95 
0.9 1.45 1.69 8.0 2.44 
0.8 1.45 1.69 8.0 1.89 
0.7 1.45 1.69 8.0 1.60 

Drained, low sandstone 
- -  1.55 1.22 11.0 1.16 

Drained, high sandstone 
- -  1.45 1.69 9.5 1.29 

A is amplification multiplied by 10 2. 
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(considering only bending strains). As a result, in a 
syncline both the average compressive strain and thick- 
ness of section in compression exceed the average mag- 
nitude of tensile strain and thickness of section in tension 
(below the neutral surface). Because compressive strain 
in the horizontal direction causes dilation in the vertical 
direction by Poisson's effect, this excess of compressive 
over tensile strain in a syncline causes a net vertical 
dilation. The same mechanism causes vertical contrac- 
tion in anticlines, with the net result that fold amplitudes 
decrease upward away from the neutral surface. In 
extreme conditions, as when a thick shale at the surface 
is underlain by a folding sandstone the folds may die out 
or even reverse displacement at the surface. 

The short wavelength second-order folds, seen in Fig. 
2 and predicted by the models, are governed by and die 
out below the uppermost sand-prone unit which is of 
latest Miocene to Late Piiocene age (Bertagne 1984) and 
occurs in the depth interval 200-652 m in GLG-18 and at 
similar levels in the other profiles. The steep vertical 
gradient for E t near the surface and the 20() m of 
shale-rich section above this sand-prone unit shifts the 
neutral surface deep below the surface and greatly 
attenuates folding displacement at the sea floor. To 
partly compensate for this effect all folding displace- 
ments in Figs. 15 and 16 are measured at a depth of 426 
m, in the middle of the sand-rich unit that controls the 
second-order folds. It is puzzling that, where observed 
on the seismic sections, these folds do not exhibit this 
predicted upward attenuation. The attenuation may be 
an artifact of the linear analysis, but it is also possible 
that the surface shale may be at least partly younger than 
the second-order folds. Deposited from suspension, 
these shales could drape over the subdued topography of 
the folds with little thickening or thinning. 

The downward shift of the neutral surface is less 
important for the large, first-order folds, but to allow 
comparison without the attenuation effect, dominant 
wavelengths and amplifications for large folds in Table 3 
are based on fold displacements measured in the middle 
of the folding section (depth 1378 m). This results in 
larger amplification and smaller dominant wavelength 
than seen in Figs. 15 and 16. For the small folds, 
parameters in Table 3 result from displacements 
measured at 426 m, as in Figs. 15 and 16. 

Effect of  sandstone./faction 

The most striking result of the analyses is that fold 
wavelength is only weakly a function of sandstone frac- 
tion in the folded section. Figure 15 shows amplification 
vs wavelength for GLG-18 models with sandstone frac- 
tion in the folded section ranging from 1.2-34.8% and 2 
= 0.9 for the sealed, normal gradient pore pressure 
model. Specific results for the other three seismic sec- 
tions are not shown because in models for all combi- 
nations of sandstone fraction and pore pressure, 
dominant wavelengths depart from those for GLG-18 by 
only 20%. All calculations shown use the intermediate- 
porosity hyperbolic stress-strain models for laboratory 
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Fig. 17. Left tangent Young's modulus for low sandstone model (solid 
curve) and high sandstone model (dashed where it differs from low 
sandstone model). Right corresponding 2 for sealed, normal gradient 

model with 2 = 0.9 at top of overpressured section. 

sand and clay. Dominant wavelengths for runs with high 
and low porosity models generally differ from inter- 
mediate porosity runs by less than 10%. 

Dominant wavelength is insensitive to sandstone frac- 
tion for a number of reasons. Figure 17 shows distri- 
butions of El and 2 for high and low sandstone models 
with the sealed, normal gradient pore pressure model 
and 2 = 0.9 at the top of the overpressured zone. At 
moderate and greater depth the difference in elastic 
moduli between sandstone and shale is small and given 
the significant shale fraction even of sand-prone units, 
the contrast between relatively sand,rich and shale-rich 
units is small. 

Simpler models confirm that only small changes in 
wavelength are expected for the calculated moduli. 
Dominant wavelength L for a single elastic layer embed- 
ded in an elastic medium is (Gough et al. 1940, Johnson 
1977, p. 10): 

L = 2:r(t3B/6Bo) 1/3 (12) 

which can be stated as: 

L -~ 2~(2HB,)L/3 (13) 

where flexural rigidity F = El~( 1 -v2) ,  B = E/( 1 - v  ~) and 
Bo = E, / (1-v~) ,  E and Eo and v and v,~ are Young's 
moduli and Poisson's ratios of the elastic layer and 
infinite medium respectively, and I = t3/12 is moment of 
inertia for the elastic layer of thickness t and unit width. 
Flexurai rigidity for the folded section of GLG,18 is 
higher by a factor of 1.86 for 34.8% sandstone than for 
1.2% sandstone. The cube root relationship of the single 
layer model (equation 13) predicts a dominant wave- 
length only 23% greater for the 34.8% sandstone model. 
Because dominant wavelength is linearly proportional 
to t but is proportional only to the cube root of (B/Bo), 
wavelength is largely governed by thickness of the 
folded section for the modest contrasts in modulus 
predicted by the hyperbolic stress-strain model for fold- 
ing units extending to depths of several kilometers. 
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Because the Mexican Ridges folded section is a multi- 
layer and because the modulus contrast with the under- 
lying overpressured unit is small, the vertical compliance 
of the multilayer itself may be important in accommo- 
dating folding. Johnson (1977, pp. 25-74) found domi- 
nant wavelength L m for a multilayer confined above and 
below by rigid, non-folding layers: 

L m = 2 3 ' / ; ( Z / n T g )  1/2( Bp~I/1,4, 
\ Bnt] 

(14) 

where n is an integer equal to 1 for the relevant geom- 
etry, Tis total thickness of the multilayer, tl is thickness 
of each stiff layer, tl/t is the fraction of the multilayer that 
is stiff, Bp and B,  are elastic moduli parallel and normal 
to the layering, respectively. The moduli Bp and Bn are 
composites representing the effect of both soft and stiff 
layers. Increasing sandstone fraction from 1% to 50% 
increases the ratio of Bp/Bn from 1.004 to 1.087 at a 
depth of 1500 m, the approximate middle of the folding 
section. When taken to the 1/4 power, this difference 
produces only a 2% change in dominant wavelength. 
Thus for modulus values predicted by the hyperbolic 
stress-strain model, dominant wavelength should be 
only weakly influenced by the effect of sandstone frac- 
tion on vertical and horizontal compliances in the fold- 
ing section. 

The effect of sandstone fraction on dominant wave- 
length of the upper, small wavelength folds slightly 
exceeds that for the longer folds. The modulus contrast 
between sandstone and shale is higher near the surface, 
which increases the influence of sandstone fraction. It is 
notable that the folded sediments of the Mexican Ridges 
were deposited over a wide range of ocean depth and 
distance to the shelf. Given the extreme range of 
depositional environments it is probable that sandstone 
fraction varies along strike and downslope, and the 
predicted insensitivity of wavelength to sandstone frac- 
tion may account for the modest variation in wavelength 
across the foldbelt. 

The greatest influence of sandstone fraction is on fold 
amplification rather than on dominant wavelength. For 
a constant), the initial amplification is 45% higher for the 
highest sandstone model than for the lowest sandstone 
model for long wavelength folds. Range of initial ampli- 
fication is far greater for the shallow folds, varying by a 
factor of 2.8. It is significant that small wavelength 
surface folds are most common in those parts of the four 
seismic sections where the clinoforms, indicative of high 
sand fraction, are well developed in the sand-prone unit 
found at 200--652 m depth in GLG-18. 

The finite element models (Fig. 15) suggest also that 
the difference in amplification between short and long 
wavelength folds is strongly a function of sandstone 
fraction. The modulus contrast between sand-rich and 
sand-poor units is much greater near the surface, where 
the sand and shale moduli are very different. High 
sandstone fraction therefore enhances fold amplifi- 
cation more in the near-surface, short wavelength folds 
than in the long wavelength folds. The much greater 

limb dips for long than short wavelength folds in the 
Mexican Ridges seem most consistent with a small 
sandstone fraction (Fig. 15). Although restriction of 
short wavelength folding to surface layers is favored by 
the downward reduction in modulus contrast between 
layers, surface folding in a multilayer is promoted also 
by the lack of constraint at the free surface. Ramberg 
(1970) demonstrated short wavelength surface folds 
superimposed on long wavelength folds in a multilayer 
overlying a less viscous substratum. The multilayer con- 
tained alternating soft and stiff units but neither changed 
with depth. 

Effect of pore pressure 

Increased pore pressure in the basal shale reduces its 
effective elastic modulus, increasing dominant wave- 
length as predicted by the single layer model (equation 
12). In the sealed, high gradient models, dominant 
wavelength for the longer folds increases by 10-20% in 
going from ;t = 0.7 to 2 = 0.95 (Fig. 16 and Table 3). The 
increase is greatest for the high sandstone model (Table 
3). The modest nature of the variation with pore press- 
ure for both sandstone models is predicted by the single 
layer model (equation 12). An increase in pore pressure 
from 2 = 0.7 to 2 = 0.95 decreases effective Young's 
modulus by a factor of 2 at all depths in the basal shale. 
By equation (12) this would increase dominant wave- 
length by only 25%. 

The pattern of dominant wavelength variation is simi- 
lar for the sealed, normal gradient pore pressure 
models, but for these models the low modulus zone at 
the top of the basal shale is thinner (compare Fig. 18 with 
Fig. 17). This results in shorter dominant wavelength 
(Fig. 16 and Table 3). Because the small-scale folds are a 
near-surface phenomenon, their dominant wavelength 
is unaffected by pore pressures in the basal units. 

Although dominant wavelength is little affected by 
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pore pressure magnitudes in the basal shale and is only 
modestly affected by pore pressure distribution, amplifi- 
cation of long wavelength folds is greater for high pore 
pressures in the basal section (Fig. 16) whereas amplifi- 
cation of short wavelength folds is unaffected. The 
greater prominence of the long wavelength folds is most 
consistent with high pore pressure, although as dis- 
cussed above, small sandstone fraction could also be 
responsible for this difference. 

Comparison with Mexican Ridges folding 

The Mexican Ridges are low amplitude folds and have 
probably experienced only modest reduction of wave- 
length by shortening. Pew (1982) estimated shortening 
to be 1-2%, but did not include layer-parallel shortening 
which, based on non-linear analyses, could give total 
shortening of the order of 15%. Observed wavelengths 
(Fig. 3) are generally consistent with initial dominant 
wavelengths predicted by the finite element study. The 
broad peaks in the histogram (Fig. 3) also are consistent 
with the broadness of peaks in fold amplification found 
in the numerical models (Fig. 16). Given this limited 
wavelength selectivity, and variation in the models, 
adjusting wavelengths for the probable modest shorten- 
ing would have little apparent effect on the correlation 
between calculated and observed wavelengths. 

Pew (1982) noted a general downslope increase in fold 
wavelength. The histogram (Fig. 3) shows a strong 
wavelength peak at 7 km that represents the upslope 
folds, and a secondary wavelength peak at 10 km, which 
is dominated by downslope folds. Although uncertain- 
ties argue for coincidence rather than correlation, these 
two peaks correspond approximately to the two pore 
pressure models presented. This observation fits into a 
plausible if speculative interpretation of wavelength in 
the Mexican Ridges. As shown, a downslope decrease in 
sandstone fraction would have little direct effect on 
wavelength of long folds. However,  such a trend might 
be associated with higher pore pressures downslope and 
perhaps a tendency for development of the sealed, high 
gradient pore pressure condition that would favor the 
observed longer wavelengths. A decreasing sandstone 
fraction downslope also would be consistent with the 
observed small reduction in fold amplitude. Downslope 
reduction in horizontal stress in the folded units, caused 
by shear resistance on their base, could also be import- 
ant. This would decrease horizontal shortening down- 
slope and might account for part of the increase in 
wavelength. 

CONCLUSIONS 

The hyperbolic stress-strain models provide good fits 
to porosity-depth curves for both sandstone and shale. 
They are accurate for geologically interesting depth 
ranges over which stress-strain relationships are ex- 
tremely non-linear. The models show a large increase in 
E t with depth for both sandstone and shale, but because 

the increase is greater for shale the ratio Esandstone/EshaJe 
decreases sharply with depth. This change may promote 
short folds with wavelength governed by individual 
sandstone beds near the surface, whereas at greater 
depth, interbedded sandstone and shale sections may 
fold as single units. This effect may contribute to the 
presence of short wavelength, shallow folds super- 
imposed on long wavelength, deep folds in the Mexican 
Ridges. 

The simulations of Mexican Ridges folding suggest 
some additional general observations. An important 
conclusion is that for the elastic moduli expected for 
normally consolidated sandstone-shale sequences, fold 
wavelengths can be :fairly accurately predicted if the 
thickness of folding layers is known. Equations (12) and 
(13) for simple systems illustrate the minor influence of 
modulus variations within their probable range and the 
concomitant importance of layer thicknesses. The tend- 
ency to fold is probably more strongly influenced by 
possible modulus variations than is fold wavelength. 
Although the evolution of folding is beyond the scope of 
this paper, it is clear that fold amplification is strongly a 
function of modulus contrasts, whether caused by litho- 
logic or pore pressure contrast. 

The linear elastic analysis answers only a few ques- 
tions about folding in the Mexican Ridges. A more 
complete understanding will require analysis of the 
entire continental slope and adjacent regions with gravi- 
tational driving forces, geometric nonlinearity, in- 
cremental application of the hyperbolic stress-strain 
law, and coupling with pore pressure. 
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